हिंदी

व्यंजक (cos-1X)2 का मान Sec2x के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन असत्य है।

व्याख्या:

हम जानते हैं कि `cos^-1x = sec^-1 (1/x) ≠ sec x`

इसलिए `(cos^-1x)^2 ≠ sec^2x`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 50 | पृष्ठ ४०

संबंधित प्रश्न

`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।


cot (sin–1x) का मान है।


sin-1 2x का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.


दर्शाइए कि `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


दर्शाइए कि `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


निम्न में से कौन सा cos-1x की मुख्य शाखा है?


sin (2 tan–1(0.75)) का मान है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


यदि cos–1x > sin–1x, हो तो


यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।


`tan^-1 sqrt(3)` का मुख्य मान ______ है।


cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।


यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ . 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×