Advertisements
Advertisements
प्रश्न
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
उत्तर
2 tan–1(cos θ) = tan–1(2 cosec θ)
⇒ `tan^-1 ((2costheta)/(1 - cos^2 theta)) = tan^-1(2 "cosec" theta)` ......`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
⇒ `(2costheta)/(1 - cos^2theta)` = 2 cosec θ
⇒ `(2costheta)/(sin^2theta) = 2/sintheta`
⇒ cos θ sin θ = sin2θ
⇒ cos θ sin θ – sin2θ = 0
⇒ sin θ(cos θ – sin θ) = 0
⇒ sin θ = 0 or cos θ – sin θ = 0
⇒ sin θ = 0 or 1 – tan θ = 0
⇒ θ = 0 or tan θ = 1
⇒ θ = 0° or θ = `pi/4`
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि cos–1x > sin–1x, हो तो
`sin^-1 (sin (3pi)/5)` का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।