Advertisements
Advertisements
प्रश्न
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
विकल्प
`- (2pi)/3`
`-pi/3`
`(4pi)/3`
`(5pi)/3`
उत्तर
सही उत्तर `-pi/3` है।
व्याख्या:
`sin^-1 ((-sqrt(3))/2) = sin^-1 (- sin pi/3)`
= `- sin^-1 (sin pi/3)`
= `- pi/3`.
APPEARS IN
संबंधित प्रश्न
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
sec-1 की मुख्य मान शाखा है।
cot (sin–1x) का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि cos–1x > sin–1x, हो तो
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।