Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
उत्तर
मान लीजिए `sin^-1 3/5` = θ
तब sin θ = `3/5`
जहाँ θ ∈ `[(-pi)/2, pi/2]`
इसप्रकार tan θ = `3/4`
जिससे θ = `tan^-1 3/4` प्राप्त होता है।
इसलिए, `2sin^-1 3/5 - tan^-1 17/31`
= `2theta - tan^-1 17/31`
= `2tan^-1 3/4 - tan^-1 17/31`
= `tan^-1 ((2 * 3/4)/(1 - 9/16)) - tan^-1 17/31`
= `tan^-1 24/7 - tan^-1 17/31`
= `tan^-1 ((24/7 - 17/31)/(1 + 24/7 * 17/31))`
= `pi/4`
APPEARS IN
संबंधित प्रश्न
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
फलन cos-1(2x – 1) का प्रांत है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।