Advertisements
Advertisements
प्रश्न
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
विकल्प
0
1
6
12
उत्तर
सही उत्तर 6 है।
व्याख्या:
हमारे पास cos–1α + cos–1β + cos–1γ = 3π
⇒ cos–1α + cos–1β + cos–1γ = π + π + π
⇒ cos–1α = π, cos–1β = π और cos–1γ = π
⇒ α = cos π, β = cos π और γ = cos π
∴ α = – 1, β = – 1 और γ = – 1
जो देता है α = β = γ = –1
तो α(β + γ) + β(γ + α) + γ(α + β)
⇒ (– 1)(– 1 – 1) + (– 1)(– 1 – 1) + (– 1)(– 1 – 1)
⇒ (– 1)(– 2) + (– 1)(– 2) + (– 1)(– 2)
⇒ 2 + 2 + 2
⇒ 6
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1x > sin–1x, हो तो
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।