Advertisements
Advertisements
प्रश्न
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
उत्तर
`4tan^-1 1/5 - tan^-1 1/239`
= `2(2tan^-1 1/5) - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `tan^-1 (2*5/12)/(1 - (5/12)^2) - tan^-1 1/239` ......`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (144 xx 5)/(119 xx 6) - tan^-1 1/239`
= `tan^-1 120/119 - tan^-1 1/239`
= `tan^-1 (120/119 - 1/239)/(1 + 120/119 * 1/239)` ......`("क्योंकि" tan^-1x - tan^-1y = tan^-1 (x - y)/(1 + xy))`
= `tan^-1 (120 xx 239 - 119)/(119 xx 239 + 120)`
= `tan^-1 (28680 - 119)/(28441 + 120)`
= `tan^-1 28561/28561`
= `tan^-1 1 = pi/4`
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
sin-1 2x का प्रांत है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
sin (2 sin–1 (.6)) का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
sin (2 tan–1(0.75)) का मान है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1x > sin–1x, हो तो
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।