Advertisements
Advertisements
प्रश्न
sin (2 sin–1 (.6)) का मान है।
विकल्प
.48
.96
1.2
sin 1.2
उत्तर
सही उत्तर .96 है।
व्याख्या:
यदि sin–1 (.6) = θ
तब sin θ = .6
अब sin (2θ) = 2
sinθ cosθ = 2 (.6) (.8)
= .96
APPEARS IN
संबंधित प्रश्न
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
यदि cos–1x > sin–1x, हो तो
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।