Advertisements
Advertisements
प्रश्न
`sin^-1 (cos((43pi)/5))` का मान है।
विकल्प
`(3pi)/5`
`(-7pi)/5`
`pi/10`
`- pi/10`
उत्तर
सही उत्तर `- pi/10` है।
व्याख्या:
क्योंकि `sin^-1 (cos (40pi + 3pi)/5) = sin^-1 cos(8pi + (3pi)/5)`
= `sin^-1 (cos (3pi)/5)`
= `sin^-1 (sin(pi/2 - (3pi)/5))`
= `sin^-1 (sin(- pi/10))`
= `- pi/10`.
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।