Advertisements
Advertisements
प्रश्न
व्यंजक cos–1[cos (– 680°)] का मान है।
विकल्प
`(2pi)/9`
`(-2pi)/9`
`(34pi)/9`
`pi/9`
उत्तर
सही उत्तर `(2pi)/9` है।
व्याख्या:
cos–1[cos (– 680°)] = cos–1[cos (720° – 40°)]
= cos–1[cos (– 40°)]
= cos–1[cos (40°)]
= 40°
= `(2pi)/9`.
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
cot (sin–1x) का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।