Advertisements
Advertisements
Question
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
Options
[1, 2]
[–1, 1]
[0, 1]
इनमें से कोई नहीं
Solution
सही उत्तर [1, 2] है।
व्याख्या:
माना f(x) = `sin^-1 sqrt(x - 1)`
∵ `sqrt(x - 1) ≥ 0` and `-1 ≤ sqrt(x - 1) ≤ 1`
⇒ 0 ≤ x – 1 ≤ 1
⇒ 1 ≤ x ≤ 2
⇒ `x ∈ [1, 2]`
APPEARS IN
RELATED QUESTIONS
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
sin (2 sin–1 (.6)) का मान है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
फलन cos-1(2x – 1) का प्रांत है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।