Advertisements
Advertisements
Question
tan2 (sec–12) + cot2 (cosec–13) का मान है।
Options
5
11
13
15
Solution
सही उत्तर 11 है।
व्याख्या:
tan2 (sec–12) + cot2 (cosec–13) = sec2 (sec–12) – 1 + cosec2 (cosec–13) – 1
= 22 × 1 + 32 – 2
= 11.
APPEARS IN
RELATED QUESTIONS
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
व्यंजक cos–1[cos (– 680°)] का मान है।
cot (sin–1x) का मान है।
sin (2 sin–1 (.6)) का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।