Advertisements
Advertisements
Question
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
Solution
`cos^-1 (- 1/2)` की मूख्य शाखा `underline((2pi)/3)` है।
व्याख्या:
माना `cos^1 (- 1/2)` = x
⇒ cos x = `-1/2`
⇒ cos x = `cos(- pi/3)`
⇒ cos x = `cos(pi - pi/3)`
= `cos (2pi)/3`
∴ x = `(2pi)/3 ∈ [0, pi]`
APPEARS IN
RELATED QUESTIONS
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
sec-1 की मुख्य मान शाखा है।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
cot (sin–1x) का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
y = cos–1(x2 – 4) का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।