Advertisements
Advertisements
Question
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
Solution
`cos[cos^-1 ((-sqrt(3))/2) + pi/6] = cos[cos^-1(cos (5pi)/6) + pi/6]` ......`("क्योंकि" cos (5pi)/6 = (-sqrt(3))/2)`
= `cos((5pi)/6 + pi/6)` ......`("क्योंकि" cos^-1 cosx = x; x ∈ [0, pi])`
= `cos(pi)` = –1
APPEARS IN
RELATED QUESTIONS
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
`sin^-1 (cos((43pi)/5))` का मान है।
sin-1 2x का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।