Advertisements
Advertisements
Question
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
Solution
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में π – cot–1x है।
व्याख्या:
स्पष्ट रूप से, –x ∈ R सभी के लिए x ∈ R
मान लीजिए cot–1(–x) = θ, θ ∈ (0, π) ......(i)
⇒ –x = cot θ
⇒ x = – cot θ
⇒ x = cot (π – θ)
⇒ cot–1x = π – θ .......[∵ x ∈ R और π – θ ∈ (0, π) सभी θ ∈ (0, π) के लिए]
⇒ θ = π – cot–1x .....(ii)
(i) और (ii) से, हम प्राप्त करते हैं।
cot–1(–x) = π – cot–1x
APPEARS IN
RELATED QUESTIONS
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
sin-1 2x का प्रांत है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
sin (2 tan–1(0.75)) का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1x > sin–1x, हो तो
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।