Advertisements
Advertisements
Question
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
Solution
माना `tan-1 2/3` = x और `tan^-1 sqrt(3)` = y
इसलिए tan x = `2/3` और tan y = `sqrt(3)`
अत:, `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
= sin (2x) + cos y
= `(2tanx)/(1 + tan^2x)+/sqrt(1 +tan^2y)`
= `(2*2/3)/(1 + 4/9) + 1/( + sqrt((sqrt(3))^2`
= `12/13 +1/2`
= `37/26`.
APPEARS IN
RELATED QUESTIONS
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।