Advertisements
Advertisements
Question
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
Options
`(5pi^2)/4` तथा `pi^2/8`
`pi/2` तथा `(-pi)/2`
`pi^2/4` तथा `(-pi^2)/4`
`pi^2/4` तथा 0
Solution
सही उत्तर `(5pi^2)/4` तथा `pi^2/8` है।
व्याख्या:
हम जानते हैं कि
(sin–1x)2 + (cos–1x)2
= (sin–1x + cos–1x)2 – 2 sin–1x cos–1x
= `pi^2/4 - 2sin^1x (pi/2 - sin^-1x)`
= `pi^2/4 - pi sin^-1x + 2(sin^-1x)^2`
= `2[(sin^-1x)^2 - pi/2 sin^-1x + pi^2/8]`
= `2[(sin^-1x - pi/4)^2 + pi^2/16]`
इस प्रकार न्यूनतम मान `2(pi^2/16)`
अर्थात `pi^2/8` है तथा अधिकतम मान `2[((-pi)/2 - pi/4)^2 + pi^2/16]`
अर्थात `(5pi^2)/4` है।
APPEARS IN
RELATED QUESTIONS
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
व्यंजक cos–1[cos (– 680°)] का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।