Advertisements
Advertisements
Question
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Solution
`sin^-1 5/13 = tan^-1 5/12`
`cos^-1 3/5 = tan^-1 4/3`
∴ L.H.S. = `sin^-1 5/13 + cos^-1 3/5`
= `tan^-1 5/12 + tan^-1 4/3`
= `tan-1 (5/12 + 4/3)/(1 - 5/12 * 4/3)`
= `tan^-1 ((15 + 48)/36)/((36 - 20)/36)`
= `tan^-1 63/16`
APPEARS IN
RELATED QUESTIONS
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।