Advertisements
Advertisements
Question
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
Solution
`sec^-1 (1/2)` के मानों का समुच्चय Φ है।
व्याख्या:
चूँकि, प्रांत का sec–1x R – (–1, 1) or `(-oo, -1] ∪ [1, oo)`
इसलिए, `sec^-1 1/2` के लिए मानों का कोई समुच्चय मौजूद नहीं है।
तो, समाधान समुच्चय Φ है।
APPEARS IN
RELATED QUESTIONS
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
फलन y = sin–1 (- x2) का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।