Advertisements
Advertisements
प्रश्न
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
उत्तर
`sec^-1 (1/2)` के मानों का समुच्चय Φ है।
व्याख्या:
चूँकि, प्रांत का sec–1x R – (–1, 1) or `(-oo, -1] ∪ [1, oo)`
इसलिए, `sec^-1 1/2` के लिए मानों का कोई समुच्चय मौजूद नहीं है।
तो, समाधान समुच्चय Φ है।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
फलन y = sin–1 (- x2) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
sin (2 tan–1(0.75)) का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1x > sin–1x, हो तो
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।