Advertisements
Advertisements
प्रश्न
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
पर्याय
`pi/6`
`(5pi)/6`
`(7pi)/6`
1
उत्तर
सही उत्तर `underline((5pi)/6)` है।
व्याख्या:
`2 sec^-1 2 + sin^-1 1/2 = 2sec^-1 (sec pi/3) + sin^-1 (sin pi/6)`
= `2 * pi/3 + pi/6`
= `(2pi)/3 + pi/6`
= `(5pi)/6`
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
cot (sin–1x) का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
`sin^-1 [cos((33pi)/5)]` का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।