Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
उत्तर
L.H.S. `cot(pi/4 - 2cot^-1 3)`
= `cot[tan^-1(1) - 2 tan^-1 1/3]` ......`["क्योंकि" cot^-1x = tan^-1 1/x]`
= `cot[tan^-1(1) - tan^-1 (2 xx 1/3)/(1 - (1/3)^2)]` ......`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `cot[tan^-1(1) - tan^-1 (2/3)/(8/9)]`
= `cot[tan^-1(1) - tan^-1 3/4]`
= `cot[tan^-1 ((1 - 3/4)/(1 + 1 xx 3/4))]`
= `cot[tan^-1 ((1/4)/(7/4))]`
= `cot[tan^-1 1/7]` ......`["क्योंकि" tan^-1 1/x = cot^-1x]`
= `cot[cot^-1 (7)]`
= 7 R.H.S
इसलिए सिद्ध।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
`sin^-1 (cos((43pi)/5))` का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।