Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
उत्तर
मान लीजिए cot–1x = θ.
तब cot θ = x
या
`tan(pi/2 - theta)` = x
⇒ `tan^-1x = pi/2 - theta`
या tan(cot–1x) = tan θ
= `cot(pi/2 - theta)`
= `cot(pi/2 - cot^-1 x)`
= cot (tan–1x)
इसलिए cot (tan–1x) = tan θ = cot `(pi/2 - theta)` = `cot(pi/2 - cot^-1 x)` = cot (tan–1x)
यह समता x के सभी मानों के लिए सत्य है क्योंकि x ∈ R के लिए tan–1x तथा cot–1x सत्य है।
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
tan 1 तथा tan–11 कौन सा बड़ा है?
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
sec-1 की मुख्य मान शाखा है।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .