मराठी

Sec-1 की मुख्य मान शाखा है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sec-1 की मुख्य मान शाखा है।

पर्याय

  • `[- pi/2, pi/2] - {0}`

  • `[0, pi] - {pi/2}`

  • (0, π)

  • `(- pi/2, pi/2)`

MCQ

उत्तर

सही उत्तर `[0, pi] - {pi/2}` है।

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ २८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 22 | पृष्ठ २८

संबंधित प्रश्‍न

x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।


`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।


tan 1 तथा tan–11 कौन सा बड़ा है?


`sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।


y = cos–1(x2 – 4) का प्रांत है।


f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।


sin (2 sin–1 (.6)) का मान है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


दर्शाइए कि `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


फलन cos-1(2x – 1) का प्रांत है।


f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।


सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।


θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।


प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×