मराठी

यदि sin–1x + sin–1y = π2 तब cos–1x + cos–1y का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।

पर्याय

  • `pi/2`

  • π

  • 0

  • `(2pi)/3`

MCQ

उत्तर

सही उत्तर `pi/2` है।

व्याख्या:

क्योंकि sin–1x + sin–1y = `pi/2` है इसलिए

 `(pi/2 - cos^-1x) + (pi/2 - cos^-1 y) = pi/2`

⇒ cos–1x + cos–1y  = `pi/2`.

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 36 | पृष्ठ ३३

संबंधित प्रश्‍न

`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।


सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।


`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।


`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।


`sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


सिद्ध कीजिए कि `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


sin (2 tan–1(0.75)) का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


`sin^-1 (sin  (3pi)/5)` का मान ______ है।


यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ . 


प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।


n का वह न्यूनतम मान जिसके लिए `tan^-1  "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।


`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×