Advertisements
Advertisements
प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
उत्तर
यदि `cos^-1 (sqrt(3)/2)` = θ, तो cos θ = `sqrt(3)/2`
चूंकि हम मुख्य शाखा पर विचार कर रहे हैं, θ ∈ [0, π]।
साथ ही, चूँकि `sqrt(3)/2` > 0, θ वह प्रथम चतुर्थांश में है।
अत: `cos^-1 (sqrt(3)/2) = pi/6`
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
sin-1 2x का प्रांत है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
sin (2 tan–1(0.75)) का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि cos–1x > sin–1x, हो तो
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।