मराठी

Cot[cos-1(725)] का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`cot[cos^-1 (7/25)]` का मान है।

पर्याय

  • `25/24`

  • `25/7`

  • `24/25`

  • `7/24`

MCQ

उत्तर

सही उत्तर  `underline(7/24)`है।

व्याख्या:

हमारे पास, `cot[cos^-1 (7/25)]`

माना `cos^-1  7/25` = θ

∴ cos θ = `7/25`

⇒ cot θ = `7/24`

∴  `cot[cos^-1 (7/25)] = cot[cot^-1  (7/24)] = 7/24`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 32 | पृष्ठ ३८

संबंधित प्रश्‍न

`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।


`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।


tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।


`cos[sin^-1  1/4 + sec^-1  4/3]` का मान ज्ञात कीजिए।


समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


व्यंजक cos–1[cos (– 680°)] का मान है।


cot (sin–1x) का मान है।


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


y = cos–1(x2 – 4) का प्रांत है।


f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


सिद्ध कीजिए कि `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


sin (2 tan–1(0.75)) का मान है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।


`cos^-1 (cos  (14pi)/3)` का मान ______ है।


cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।


परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।


प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×