Advertisements
Advertisements
प्रश्न
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
पर्याय
`pi/3`
`pi/2`
`(2pi)/3`
`(-2pi)/3`
उत्तर
सही उत्तर `pi/3` है।
व्याख्या:
क्योंकि `sin^-1 sin(- 600 xx pi/180) = sin^-1 sin((-10pi)/3)`
= `sin^-1 [- sin(4pi - (2pi)/3)]`
= `sin^-1 (sin (2pi)/3)`
= `sin^-1 (sin(pi - pi/3))`
= `sin^-1(sin pi/3)`
= `pi/3`.
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
cot (sin–1x) का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
फलन cos-1(2x – 1) का प्रांत है।
sin (2 tan–1(0.75)) का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।