Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
उत्तर
L.H.S. `sin^-1 8/17 + sin^-1 3/5`
`sin^-1x +sin^-1y sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)]` का प्रयोग करना
`sin^-1 8/17 + sin^-1 3/5 = sin^-1[8/17* sqrt(1 - (3/5)^2) + 3/5 * sqrt(1 (8/1)^2)]`
= `sin^-1[8/17 * sqrt(1 9/25) + 3/5* sqrt(1 - 64/289)]`
= `sin^-1 [8/17 * sqrt(16/25) + 3/5* sqrt(225/289)]`
= `sin^-1 [8/17 * 4/5 +3/5 * 15/17]`
= `sin-1 [32/85 + 45/85]`
=`sin^-1 77/85` R.H.S.
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
cot (sin–1x) का मान है।
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।