Advertisements
Advertisements
प्रश्न
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
उत्तर
`cos[sin^-1 1/4 + sec^-1 4/3] = cos[sin^-1 1/4 + cos^-1 3/4]`
= `cos(sin^-1 1/4) cos(cos^-1 3/4) - sin(sin^-1 1/4) sin(cos^-1 3/4)`
= `3/4 sqrt(1 - (1/4)^2) - 1/4 sqrt(1 - (3/4)^2`
= `3/4 sqrt(15)/4 - 1/4 sqrt(7)/4`
= `(3sqrt(15) - sqrt(7))/6`
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
sin (2 tan–1(0.75)) का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
यदि cos–1x > sin–1x, हो तो
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।