मराठी

Cos[sin-1 14+sec-1 43] का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`cos[sin^-1  1/4 + sec^-1  4/3]` का मान ज्ञात कीजिए।

बेरीज

उत्तर

`cos[sin^-1  1/4 + sec^-1  4/3] = cos[sin^-1  1/4 + cos^-1  3/4]`

= `cos(sin^-1  1/4) cos(cos^-1  3/4) - sin(sin^-1  1/4) sin(cos^-1  3/4)`

= `3/4 sqrt(1 - (1/4)^2) - 1/4 sqrt(1 - (3/4)^2`

= `3/4 sqrt(15)/4 - 1/4 sqrt(7)/4`

= `(3sqrt(15) - sqrt(7))/6`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ २३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 12 | पृष्ठ २३

संबंधित प्रश्‍न

`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।


tan 1 तथा tan–11 कौन सा बड़ा है?


x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।


समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।


निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


फलन y = sin–1 (- x2) का प्रांत है।


y = cos–1(x2 – 4) का प्रांत है।


f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


sin (2 tan–1(0.75)) का मान है।


व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


यदि cos–1x > sin–1x, हो तो


`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।


`sec^-1 (1/2)` के मानों का समुच्चय ______ है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×