Advertisements
Advertisements
प्रश्न
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
पर्याय
α = `(-pi)/2`, β = `pi/2`
α = 0, β = π
α = `(-pi)/2`, β = `(3pi)/2`
α = 0, β = 2π
उत्तर
सही उत्तर α = 0, β = π है।
व्याख्या:
दिया गया है कि `(-pi)/2 ≤ sin^-1x ≤ pi/2`
⇒ `(-pi)/2 + pi/2 ≤ sin^-1x + pi/2 ≤ pi/2 + pi/2`
⇒ 0 ≤ sin–1x + (sin–1x + cos–1x) ≤ π
⇒ 0 ≤ 2sin–1x + cos–1x ≤ π
APPEARS IN
संबंधित प्रश्न
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
व्यंजक cos–1[cos (– 680°)] का मान है।
sin-1 2x का प्रांत है।
फलन y = sin–1 (- x2) का प्रांत है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।