Advertisements
Advertisements
Question
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
Solution
L.H.S. `cot(pi/4 - 2cot^-1 3)`
= `cot[tan^-1(1) - 2 tan^-1 1/3]` ......`["क्योंकि" cot^-1x = tan^-1 1/x]`
= `cot[tan^-1(1) - tan^-1 (2 xx 1/3)/(1 - (1/3)^2)]` ......`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `cot[tan^-1(1) - tan^-1 (2/3)/(8/9)]`
= `cot[tan^-1(1) - tan^-1 3/4]`
= `cot[tan^-1 ((1 - 3/4)/(1 + 1 xx 3/4))]`
= `cot[tan^-1 ((1/4)/(7/4))]`
= `cot[tan^-1 1/7]` ......`["क्योंकि" tan^-1 1/x = cot^-1x]`
= `cot[cot^-1 (7)]`
= 7 R.H.S
इसलिए सिद्ध।
APPEARS IN
RELATED QUESTIONS
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
y = cos–1(x2 – 4) का प्रांत है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
sin (2 tan–1(0.75)) का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।