Advertisements
Advertisements
Question
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
Options
0
1
2
अनंत
Solution
सही उत्तर अनंत है।
व्याख्या:
हमारे पास `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)`
⇒ `sqrt(2 cos^2x) = sqrt(2)x` .....`["क्योंकि" cos^-1 (cos x) = x]`
⇒ `sqrt(2) cos x = sqrt(2)x`
⇒ cos x = x
जो x के किसी भी मान के लिए संतुष्ट नहीं है।
APPEARS IN
RELATED QUESTIONS
tan (tan-1(-4)) को परिकलित कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
sec-1 की मुख्य मान शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
cot (sin–1x) का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
`cot[cos^-1 (7/25)]` का मान है।
यदि cos–1x > sin–1x, हो तो
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।