Advertisements
Advertisements
Question
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
Solution
यदि a1, a2, a3, ..., an समांतर श्रेणी के पद हैं।
∴ d = a2 – a1
= a3 – a2
= a4 – a3 ....
∴ `tan[tan^-1 (("a"_2 - "a"_1)/(1 + "a"_1"a"_2)) + tan^-1 (("a"_3 - "a"_2)/(1 + "a"_2 "a"_3)) + tan^-1 (("a"_4 - "a"_3)/(1 + "a"_3 "a"_4)) + ...... + tan^-1 (("a"_"n" - "a"_("n" - 1))/(1 + "a"_("n" - 1) * "a"_"n"))]``
⇒ tan [(tan–1 a2 – tan–1 a1) + (tan–1 a3 – tan–1 a2) + (tan–1 a4 – tan–1 a3) + ... + (tan–1 an – tan–1 an – 1)] .....`["क्योंकि" tan^-1 (x - y)/(1 + xy) = tan^-1x - tan^-1y]`
⇒ tan [(tan–1 a2 – tan–1 a1 + tan–1 a3 – tan–1 a2 + tan–1 a4 – tan–1 a3 + ... + tan–1 an – tan–1 an – 1]
⇒ tan [tan–1 an – tan–1 a1]
⇒ `tan[tan^-1 (("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n"))]`
⇒ `("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n")` .....[∵ tan (tan–1x) = x]
APPEARS IN
RELATED QUESTIONS
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
sec-1 की मुख्य मान शाखा है।
cot (sin–1x) का मान है।
sin-1 2x का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
sin (2 tan–1(0.75)) का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।