हिंदी

एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि ∆ABC ∼ ∆PQR है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि ∆ABC ∼ ∆PQR है।

योग

उत्तर

दिया गया,

`("AB")/("PQ") = ("AC")/("PR") = ("AD")/("PM")`

आइए AD और PM को क्रमशः बिंदु E और L तक इस प्रकार बढ़ाएँ कि AD = DE और PM = ML. फिर, B को E से, C को E से, Q को L से और R को L से मिलाएँ

हम जानते हैं कि माध्यिकाएँ विपरीत भुजाओं को विभाजित करती हैं।

BD = DC और QM = MR

AD = DE                  ...(निर्माण द्वारा)

PM = ML                 ...(निर्माण द्वारा)

चतुर्भुज ABEC में, विकर्ण AE और BC एक दूसरे को बिंदु D पर समद्विभाजित करते हैं।

अत: चतुर्भुज ABEC एक समांतर चतुर्भुज है।

∴ AC = BE and AB = EC     ...(समांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं)

इसी प्रकार, हम सिद्ध कर सकते हैं कि चतुर्भुज PQLR एक समांतर चतुर्भुज है और PR = QL, PQ = LR

यह दिया गया है।

`=>("AB")/("PQ") = ("AC")/("PR") = ("AD")/("PM")`

`=>("AB")/("PQ")=("BE")/("QL")= (2"AD")/(2"PM")`

`=>("AB")/("PQ") = ("BE")/("QL") = ("AE")/("PL")`

∴ ΔABE ∼ ΔPQL       ...(SSS समरूपता कसौटी)

हम जानते हैं कि समरूप त्रिभुजों के संगत कोण बराबर होते हैं।

∴ ∠BAE = ∠QPL        ...(1)

इसी प्रकार, यह सिद्ध किया जा सकता है कि ΔAEC ∼ ΔPLR और

∠CAE = ∠RPL             ...(2)

समीकरण (1) और (2) जोड़ने पर,

∠BAE + ∠CAE = ∠QPL + ∠RPL

⇒ ∠CAB = ∠RPQ             ...(3)

ΔABC और ΔPQR में,

`("AB")/("PQ") = ("AC")/("PR")`

∠CAB = ∠RPQ

∴ ΔABC ∼ ΔPQR        ...(SAS समरूपता की कसौटी)

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - प्रश्नावली 6.3 [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
प्रश्नावली 6.3 | Q 14. | पृष्ठ १५५

संबंधित प्रश्न

बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

 


बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।


आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° हैं। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।

 


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔABD ∼ ΔCBE


लंबाई 6 m वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई 4 m है, जबकि उसी समय एक मीनार की छाया की लंबाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।


आकृति में, दो रेखाखंड AC और BD परस्पर बिंद P पर इस प्रकार प्रतिच्छेद करते हैं कि, PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, ∠APB = 50° और ∠CDP = 30° है तब, ∠PBA बराबर ______ है।


त्रिभुजों PQR और MST में,  ∠P = 55°, ∠Q = 25°, ∠M = 100° और ∠S = 25° है। क्या ∆QPR ~ ∆TSM है? क्यों?


आकृति में, यदि DE || BC है, तो ar(ADE) और ar(DECB) का अनुपात ज्ञात कीजिए। 


त्रिभुज PQR में, भुजा PR पर स्थित N एक ऐसा बिंदु है कि QN ⊥ PR है। यदि PN . NR = QN2 है, तो सिद्ध कीजिए कि ∠PQR = 90° है।  


आकृति में, ABC एक त्रिभुज है जिसका ∠B समकोण है तथा BD ⊥ AC है। यदि AD = 4 cm, और CD = 5 cm है, तो BD और AB ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×