English

एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि ∆ABC ∼ ∆PQR है। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि ∆ABC ∼ ∆PQR है।

Sum

Solution

दिया गया,

`("AB")/("PQ") = ("AC")/("PR") = ("AD")/("PM")`

आइए AD और PM को क्रमशः बिंदु E और L तक इस प्रकार बढ़ाएँ कि AD = DE और PM = ML. फिर, B को E से, C को E से, Q को L से और R को L से मिलाएँ

हम जानते हैं कि माध्यिकाएँ विपरीत भुजाओं को विभाजित करती हैं।

BD = DC और QM = MR

AD = DE                  ...(निर्माण द्वारा)

PM = ML                 ...(निर्माण द्वारा)

चतुर्भुज ABEC में, विकर्ण AE और BC एक दूसरे को बिंदु D पर समद्विभाजित करते हैं।

अत: चतुर्भुज ABEC एक समांतर चतुर्भुज है।

∴ AC = BE and AB = EC     ...(समांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं)

इसी प्रकार, हम सिद्ध कर सकते हैं कि चतुर्भुज PQLR एक समांतर चतुर्भुज है और PR = QL, PQ = LR

यह दिया गया है।

`=>("AB")/("PQ") = ("AC")/("PR") = ("AD")/("PM")`

`=>("AB")/("PQ")=("BE")/("QL")= (2"AD")/(2"PM")`

`=>("AB")/("PQ") = ("BE")/("QL") = ("AE")/("PL")`

∴ ΔABE ∼ ΔPQL       ...(SSS समरूपता कसौटी)

हम जानते हैं कि समरूप त्रिभुजों के संगत कोण बराबर होते हैं।

∴ ∠BAE = ∠QPL        ...(1)

इसी प्रकार, यह सिद्ध किया जा सकता है कि ΔAEC ∼ ΔPLR और

∠CAE = ∠RPL             ...(2)

समीकरण (1) और (2) जोड़ने पर,

∠BAE + ∠CAE = ∠QPL + ∠RPL

⇒ ∠CAB = ∠RPQ             ...(3)

ΔABC और ΔPQR में,

`("AB")/("PQ") = ("AC")/("PR")`

∠CAB = ∠RPQ

∴ ΔABC ∼ ΔPQR        ...(SAS समरूपता की कसौटी)

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  Is there an error in this question or solution?
Chapter 6: त्रिभुज - प्रश्नावली 6.3 [Page 155]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 6 त्रिभुज
प्रश्नावली 6.3 | Q 14. | Page 155

RELATED QUESTIONS

आकृति में, ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° हैं। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।

 


आकृति में, `"QR"/"QS"` = `"QT"/"PR"` तथा ∠1 = ∠2 है। दर्शाइए कि ∆PQS ~ ∆TQR है।

 


लंबाई 6 m वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई 4 m है, जबकि उसी समय एक मीनार की छाया की लंबाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।


AD और PM त्रिभुओं ABC और PQR की क्रमशः माध्यिकाएँ हैं, जबकि ∆ABC ∼ ∆PQR है। सिद्ध कीजिए कि `("AB")/("PQ") = ("AD")/("PM")` है।


आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि `"BD"/"CD" = "AB"/"AC"` है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

 


ΔABC ~ ΔDFE, ∠A = 30°, ∠C = 50°, AB = 5 cm, AC = 8 cm और DF = 7.5 cm दिया हुआ है। तब, निम्नलिखित ______ सत्य है।


यदि त्रिभुज ABC और DEF में, `(AB)/(DE) = (BC)/(FD)` है, तो ये समरूप होंगे, जब ______।


एक त्रिभुज की दो भुजाओं और परिमाप में से प्रत्येक क्रमश : दूसरे त्रिभुज की संगत दोनों भुजाओं और परिमाप के तिगुने हैं। क्या दोनों त्रिभुज समरूप हैं?


आकृति में, यदि ∠1 = ∠2 और ΔNSQ ≅ ΔMTR है, तो सिद्ध कीजिए ΔPTS ~ ΔPRQ है।


दो समरूप त्रिभुजों के क्षेत्रफल 36 cm2 और 100 cm2 हैं। यदि बड़े त्रिभुज की एक भुजा की लंबाई 20 cm है, तो उस भुजा के संगत छोटे त्रिभुज की भुजा की लंबाई ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×