हिंदी

If ^ I , ^ J , ^ K Are Unit Vectors, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then

विकल्प

  • \[\hat{ i }  . \hat{ j }  = 1 \]

  • \[\hat{ i }  . \hat{ i }  = 1 \]

  • \[\hat{ i }  ×  \hat{ j }  = 1 \]

  • \[\hat{ i }  ×  ( \hat{ j }   × \hat{ k} )  = 1 \]

MCQ

उत्तर

\[\text{ Let us check each option one by one.} \]

\[(a) \text{ We know } \]

\[ \hat{ i }  . \hat{ j }  = 0\]

\[ \neq 1\]

\[\]

\[(b) \text{ We know } \]

\[ \hat{ i }  . \hat{ i }  = \left| \hat{ i }  \right|^2 \]

\[ = 1^2 \]

\[ = 1\]

\[(c) \hat{ i }  \times \hat{ j }  = \hat{ k }  \]

\[ \neq 1\]

\[(d) \hat{ i }  \times \left( \hat{ j } \times \hat{ k }  \right) = \hat{ i } \times \hat{ i }  \] 

\[ = 0\]

\[ \neq 1\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - MCQ [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
MCQ | Q 10 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find a vector of magnitude 49, which is perpendicular to both the vectors  \[2 \hat{ i }   + 3 \hat{ j }  + 6 \hat{ k }  \text{ and } 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


Let \[\vec{a} = \hat{ i } + 4 \hat{ j }  + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k }  \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  .\]  Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and }  \vec{c} \cdot \vec{d} = 15 .\]

 
 

 


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ j }  \times \hat{ i }  \right) .\]

 


Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


\[\text{ If }  \left| \vec{a} \right| = 10, \left| \vec{b} \right| = 2 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 16, \text{ find }  \vec{a} . \vec{b} .\]

 


For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.


Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk`  and  `vecb = 3hati - 2hatj + 2hatk` . 


The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.


If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.


If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×