हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

If the Intensity of Sound is Doubled, by How Many Decibels Does the Sound Level Increase? - Physics

Advertisements
Advertisements

प्रश्न

If the intensity of sound is doubled, by how many decibels does the sound level increase?

योग

उत्तर

Let the intensity of the sound be I and \[\beta_1\] be the sound level. If the intensity of the sound is doubled, then its sound level becomes 2I.
Sound level \[\beta_1\] is given by ,\[\beta_1  = 10   \log_{10} \frac{I}{I_0}\],

where I0 is the constant reference intensity.
When the intensity doubles, the sound level is given by:

\[\beta_2  = 10   \log_{10} \frac{2I}{I_0}\].

According to the question,

\[   \beta_2  -  \beta_1  = 10  \log\left( \frac{2I}{I} \right)\] 

\[                             = 10 \times 0 . 3010 = 3 \text{ dB }\]

The sound level is increased by 3 dB.

shaalaa.com
Wave Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Sound Waves - Exercise [पृष्ठ ३५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 16 Sound Waves
Exercise | Q 20 | पृष्ठ ३५३

संबंधित प्रश्न

If you are walking on the moon, can you hear the sound of stones cracking behind you? Can you hear the sound of your own footsteps?


The voice of a person, who has inhaled helium, has a remarkably high pitch. Explain on the basis of resonant  vibration of vocal cord filled with air and with helium.


When sound wave is refracted from air to water, which of the following will remain unchanged?


When two waves with same frequency and constant phase difference interfere,


A small source of sounds moves on a circle as shown in figure and an observer is sitting at O. Let \[v_1, v_2,    v_3\] be the frequencies heard when the source is at A, B and C respectively.


An electrically maintained tuning fork vibrates with constant frequency and constant amplitude. If the temperature of the surrounding air increases but pressure remains constant, the produced will have

(a) larger wavelength
(b) larger frequency
(c) larger velocity
(d) larger time period.


The fundamental frequency of a vibrating organ pipe is 200 Hz.

(a) The first overtone is 400 Hz.
(b) The first overtone may be 400 Hz.
(c) The first overtone may be 600 Hz.
(d) 600 Hz is an overtone.


A man stands before a large wall at a distance of 50.0 m and claps his hands at regular intervals. Initially, the interval is large. He gradually reduces the interval and fixes it at a value when the echo of a clap merges every 3 seconds, find the velocity of sound in air.


The absolute temperature of air in a region linearly increases from T1 to T2 in a space of width d. Find the time taken by a sound wave to go through the region in terms of T1T2d and the speed v of sound at 273 K. Evaluate this time for T1 = 280 K, T2 = 310 K, d = 33 m and v = 330 m s−1.


The length of the wire shown in figure between the pulley is 1⋅5 m and its mass is 12⋅0 g. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest.


A particular guitar wire is 30⋅0 cm long and vibrates at a frequency of 196 Hz when no finger is placed on it. The next higher notes on the scale are 220 Hz, 247 Hz, 262 Hz and 294 Hz. How far from the end of the string must the finger be placed to play these notes?


A uniform horizontal rod of length 40 cm and mass 1⋅2 kg is supported by two identical wires as shown in figure. Where should a mass of 4⋅8 kg be placed on the rod so that the same tuning fork may excite the wire on left into its fundamental vibrations and that on right into its first overtone? Take g = 10 m s−2.


A string of length L fixed at both ends vibrates in its fundamental mode at a frequency ν and a maximum amplitude A. (a)

  1. Find the wavelength and the wave number k. 
  2. Take the origin at one end of the string and the X-axis along the string. Take the Y-axis along the direction of the displacement. Take t = 0 at the instant when the middle point of the string passes through its mean position and is going towards the positive y-direction. Write the equation describing the standing wave.

A heavy string is tied at one end to a movable support and to a light thread at the other end as shown in following figure. The thread goes over a fixed pulley and supports a weight to produce a tension. The lowest frequency with which the heavy string resonates is 120 Hz. If the movable support is pushed to the right by 10 cm so that the joint is placed on the pulley, what will be the minimum frequency at which the heavy string can resonate?


Two sources of sound S1 and S2 vibrate at same frequency and are in phase. The intensity of sound detected at a point P as shown in the figure is I0. (a) If θ equals 45°, what will be the intensity of sound detected at this point if one of the sources is switched off? (b) What will be the answer of the previous part if θ = 60°?


For the propagation of longitudinal waves, the medium must have

  1. elasticity
  2. mass
  3. inertia
  4. force of cohesion

During propagation of a plane progressive mechanical wave ______.

  1. all the particles are vibrating in the same phase.
  2. amplitude of all the particles is equal.
  3. particles of the medium executes S.H.M.
  4. wave velocity depends upon the nature of the medium.

In the wave equation

`y = 0.5sin  (2pi)/lambda(400t - x)m`

the velocity of the wave will be ______.


A transverse wave is represented by y = 2sin (ωt - kx) cm. The value of wavelength (in cm) for which the wave velocity becomes equal to the maximum particle velocity, will be ______.


A small speaker delivers 2W of audio output. At what distance from the speaker will one detect 120 dB intensity sound?

[Given reference intensity of sound as 10-12W/m2]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×