हिंदी

In a cyclic quadrilateral ABCD, the diagonal AC bisects the angle BCD. Prove that the diagonal BD is parallel to the tangent to the circle at point A. - Mathematics

Advertisements
Advertisements

प्रश्न

In a cyclic quadrilateral ABCD, the diagonal AC bisects the angle BCD. Prove that the diagonal BD is parallel to the tangent to the circle at point A.

योग

उत्तर


∠ADB = ∠ACB  ...(i) (Angles in same segement)

Similarly,

∠ABD = ∠ACD  ...(ii)

But, ∠ACB = ∠ACD  ...(AC is bisector of ∠BCD)

∴ ∠ADB = ∠ABD  ...(From (i) and (ii))

TAS is a tangent and AB is a chord

∴ ∠BAS =  ∠ADB  ...(Angles in alternate segment)

But, ∠ADB = ∠ABD

∴ ∠BAS = ∠ABD

But these are alternate angles

Therefore, TS || BD

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (B) [पृष्ठ २८४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (B) | Q 9 | पृष्ठ २८४

वीडियो ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×