हिंदी

In the Given Figure, O is the Centre of the Circle and Bcd is Tangent to It at C. Prove that ∠Bac + ∠Acd = 90°. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, O is the centre of the circle and BCD is tangent to it at C. Prove that ∠BAC + ∠ACD = 90°.

योग

उत्तर

In the given figure, let us join D an A.

Consider `ΔOCA`. We have,

OC = OA (Radii of the same circle)

We know that angles opposite to equal sides of a triangle will be equal. Therefore,

`∠OCA =∠OAC `       … (1)

It is clear from the figure that

`∠DCA +∠OCA=∠OCD`

Now from (1)

`∠DCA +∠OAC =∠OCD`

Now as BD is tangent therefore, `∠OCD=90^circ.`

Therefore `∠DCA +∠OAC = 90^circ`

From the figure we can see that `∠OAC =∠BAC`

`∠DAC + ∠BAC = 90^o`

Thus, we have proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Circles - Exercise 8.2 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 8 Circles
Exercise 8.2 | Q 48 | पृष्ठ ४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×