हिंदी

In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d). - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d).

योग

उत्तर

Given: In ∆PQR,

PD ⊥ QR,

PQ = a,

PR = b,

QD = c 

And DR = d

To prove: (a + b)(a – b) = (c + d)(c – d)

Proof: In right angled ΔPDQ,

PQ2 = PD2 + QD2   ...[By pythagoras theorem]

⇒ a2 = PD2 + c2

⇒ PD2 = a2 – c2  ...(i)

In right angled ∆PDR, 

PR2 = PD2 + DR2   ...[By pythagoras theorem]

⇒ b2 = PD2 + d2

⇒ PD2 = b2 – d2  ...(ii)

From equations (i) and (ii),

a2 – c2 = b2 – d2

⇒ a2 – b2 = c2 – d2

⇒ (a – b)(a + b) = (c – d)(c + d)

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Triangles - Exercise 6.4 [पृष्ठ ७४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 6 Triangles
Exercise 6.4 | Q 11 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×