English

In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d). - Mathematics

Advertisements
Advertisements

Question

In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d).

Sum

Solution

Given: In ∆PQR,

PD ⊥ QR,

PQ = a,

PR = b,

QD = c 

And DR = d

To prove: (a + b)(a – b) = (c + d)(c – d)

Proof: In right angled ΔPDQ,

PQ2 = PD2 + QD2   ...[By pythagoras theorem]

⇒ a2 = PD2 + c2

⇒ PD2 = a2 – c2  ...(i)

In right angled ∆PDR, 

PR2 = PD2 + DR2   ...[By pythagoras theorem]

⇒ b2 = PD2 + d2

⇒ PD2 = b2 – d2  ...(ii)

From equations (i) and (ii),

a2 – c2 = b2 – d2

⇒ a2 – b2 = c2 – d2

⇒ (a – b)(a + b) = (c – d)(c + d)

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Triangles - Exercise 6.4 [Page 74]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 6 Triangles
Exercise 6.4 | Q 11 | Page 74

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×