हिंदी

If the Angles of a Triangle Are 30°, 60°, and 90°, Then Shown that the Side Opposite to 30° is Half of the Hypotenuse, and the Side Opposite to 60° is √ 3 2 Times of the Hypotenuse. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.

संक्षेप में उत्तर
योग

उत्तर

Given : In ΔCAB, m∠A=90°, m∠B = 60°, M∠C=30°

To prove : i  AB = `1/2`BC         ii. AC = `sqrt(3)/2 BC`

Construction: Take a point 'D' on ray BA such that AB = AD. join point C to point D. 

Proof: In ΔCBD,

AD= AB                                                                     ....[By construction]

∴ A is the midpoint of seg BD                                  ....(i)

Also, m∠CAB = 90°                                                    ....[Given]

∴ seg CA ⊥ seg BD                                                    .....(ii)

∴ seg CA is the perpendicular bisector of seg BD     ....[From(i) and (ii)]

∴ CD = CB                                                                ...........[By perpendicular bisector theorem]

∴ ΔCDB is an isosceles triangle

∴ ∠CDB ≅ ∠CBD                                                      .....(iii)[By isosceles triangle theorem]

But,∠CBD = 60°                                                       ....(iv) [Given]

∴ ∠CDB = 60°                                                         ....[from (iii) and (iv)]

∴ ∠BCD = 60°                                                        .....[Remaining angle of a triangle ]

∴  ΔCDB is an equilateral triangle                          ....[All angle are 60°]

∴ BD = BC = CD                                                     ....(vi)[Sides of equilateral triabgle ]

   AB = `1/2` BD                                                         .....(vi) [By construction]

   AB = `1/2` BC                                .                       ...(vii) [ From (v) and (vi)]

  In ΔCAB,

 ∠CAB = 90°                                                            ....[Given]

∴ BC2 = AC2+AB2                                                     ............[ By pythagoras theorem]

∴` BC^2 = AC^2 + (1/2 BC)^2`                              ...[From (vii)]

∴`BC^2 = AC^2 +1/4 BC^2`

∴ `AC^2 = BC^2 -1/4 BC^2`

∴ `Ac^2 = (4BC^2-BC^32)/4`

∴ `AC^2 = (3BC^2)/4`

∴ `AC = sqrt(3)/2 BC`                                                 ...[ Taking square root on both sides]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A ladder leaning against a wall makes an angle of 60° with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder


D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE+ BD2 = AB2 + DE2


In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.


A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.


Which of the following can be the sides of a right triangle?

1.5 cm, 2 cm, 2.5 cm

In the case of right-angled triangles, identify the right angles.


Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm.


A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.


In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm. Calculate the length of OC.



Prove that `(sin θ + cosec θ)^2 + (cos θ + sec θ)^2 = 7 + tan^2 θ + cot^2 θ`.


In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 = AD2 - BC x CE + `(1)/(4)"BC"^2`


In a right angled triangle, the hypotenuse is the greatest side


An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


Choose the correct alternative:

If length of sides of a triangle are a, b, c and a2 + b2 = c2, then which type of triangle it is?


A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.


Lengths of sides of a triangle are 3 cm, 4 cm and 5 cm. The triangle is ______.


Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×