मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If the Angles of a Triangle Are 30°, 60°, and 90°, Then Shown that the Side Opposite to 30° is Half of the Hypotenuse, and the Side Opposite to 60° is √ 3 2 Times of the Hypotenuse. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.

थोडक्यात उत्तर
बेरीज

उत्तर

Given : In ΔCAB, m∠A=90°, m∠B = 60°, M∠C=30°

To prove : i  AB = `1/2`BC         ii. AC = `sqrt(3)/2 BC`

Construction: Take a point 'D' on ray BA such that AB = AD. join point C to point D. 

Proof: In ΔCBD,

AD= AB                                                                     ....[By construction]

∴ A is the midpoint of seg BD                                  ....(i)

Also, m∠CAB = 90°                                                    ....[Given]

∴ seg CA ⊥ seg BD                                                    .....(ii)

∴ seg CA is the perpendicular bisector of seg BD     ....[From(i) and (ii)]

∴ CD = CB                                                                ...........[By perpendicular bisector theorem]

∴ ΔCDB is an isosceles triangle

∴ ∠CDB ≅ ∠CBD                                                      .....(iii)[By isosceles triangle theorem]

But,∠CBD = 60°                                                       ....(iv) [Given]

∴ ∠CDB = 60°                                                         ....[from (iii) and (iv)]

∴ ∠BCD = 60°                                                        .....[Remaining angle of a triangle ]

∴  ΔCDB is an equilateral triangle                          ....[All angle are 60°]

∴ BD = BC = CD                                                     ....(vi)[Sides of equilateral triabgle ]

   AB = `1/2` BD                                                         .....(vi) [By construction]

   AB = `1/2` BC                                .                       ...(vii) [ From (v) and (vi)]

  In ΔCAB,

 ∠CAB = 90°                                                            ....[Given]

∴ BC2 = AC2+AB2                                                     ............[ By pythagoras theorem]

∴` BC^2 = AC^2 + (1/2 BC)^2`                              ...[From (vii)]

∴`BC^2 = AC^2 +1/4 BC^2`

∴ `AC^2 = BC^2 -1/4 BC^2`

∴ `Ac^2 = (4BC^2-BC^32)/4`

∴ `AC^2 = (3BC^2)/4`

∴ `AC = sqrt(3)/2 BC`                                                 ...[ Taking square root on both sides]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (October)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that the diagonals of a rectangle ABCD, with vertices A(2, -1), B(5, -1), C(5, 6) and D(2, 6), are equal and bisect each other.


Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 50 cm, 80 cm, 100 cm

 


PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.


A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.


A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.


Find the side and perimeter of a square whose diagonal is 10 cm.


In the given figure, point T is in the interior of rectangle PQRS, Prove that, TS+ TQ= TP+ TR(As shown in the figure, draw seg AB || side SR and A-T-B)


In ΔABC,  Find the sides of the triangle, if:

  1. AB =  ( x - 3 ) cm, BC = ( x + 4 ) cm and AC = ( x + 6 ) cm
  2. AB = x cm, BC = ( 4x + 4 ) cm and AC = ( 4x + 5) cm

In the figure, given below, AD ⊥ BC.
Prove that: c2 = a2 + b2 - 2ax.


In triangle ABC, angle A = 90o, CA = AB and D is the point on AB produced.
Prove that DC2 - BD2 = 2AB.AD.


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


In Fig. 3, ∠ACB = 90° and CD ⊥ AB, prove that CD2 = BD x AD.


In the figure below, find the value of 'x'.


Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.


A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.


A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that  OB2 + OD2 = OC2 + OA2


In the figure, find AR


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


Two rectangles are congruent, if they have same ______ and ______.


Points A and B are on the opposite edges of a pond as shown in figure. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×