मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In the given figure, point T is in the interior of rectangle PQRS, Prove that, TS2 + TQ2 = TP2 + TR2 (As shown in the figure, draw seg AB || side SR and A-T-B) - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the given figure, point T is in the interior of rectangle PQRS, Prove that, TS+ TQ= TP+ TR(As shown in the figure, draw seg AB || side SR and A-T-B)

बेरीज

उत्तर १

Construction: Through T, draw seg AB II side SR such that A-T-B, P- A-S and Q-B-R.

Proof:

seg PS || seg QR   ...(Opposite sides of rectangle)

∴ seg AS || seg BR   ...(P-A-S and Q-B-R)

also seg AB || seg SR   ...(Construction)

∴ `square` ASRB is a parallelogram   ...((By definition)

∠ASR = 90°   ...(Angle of rectangle PSRQ)

∴ `square` ASRB is a rectangle   ...(A parallelogram is a rectangle, if one of its angles is a right angle.)

∠SAB = ∠ABR = 90°   ...(Angle of a rectangle)

∴ seg TA ⊥ side PS and seg TB ⊥ side QR   ...(1)

AS = BR   ...(2) (Opposite sides of rectangle are equal)

Similarly, we can prove AP= BQ   ...(3)

In ΔTAS,

∠TAS = 90°   ...[From (1)]

∴ by Pythagoras theorem,

TS2 = TA2 + AS2   ...(4)

In ΔTBQ,

∠TBQ = 90°   ...[From (1)]

∴ by Pythagoras theorem,

TQ2 = TB2 + BQ2   ...(5)

Adding (4) and (5), we get,

TS2 + TQ2 = TA2 + AS2 + TB2 + BQ  ...(6)

In ΔTAP,

∠TAP = 90°   ...[From (1)]

∴ by Pythagoras theorem,

TP2 = TA2 + AP2   ...(7)

In ΔTBR,

∠TBR = 90°   ...[From (1)]

∴ by Pythagoras theorem,

TR2 = TB2 + BR2   ...(8)

Adding (7) and (8), we get

TP2 + TR2 = TA2 + AP2 + TB2 + BR2

∴ TP2 + TR2 = TA2 + BQ2 + TB2 + AS2   ...(9) [From (2) and (3)]

∴ from (6) and (g), we get,

TS2 + TQ2 = TP2 + TR2

shaalaa.com

उत्तर २

Construction: Draw diagonals PR and QS and let them intersect at 0. Draw seg TO.

Proof: `square` PQRS is a rectangle   ...(Given)

∴ PR=QS   ...(Diagonals of rectangle are congruent)

Multiplying both the sides by `1/2`, we get,

`1/2`PR = `1/2`QS   ...(1)

But, `1/2`PR = OP = OR   ...(2)

and `1/2`QS = OS = OQ   ...(3) [Diagonals of rectangle bisect each other]

∴ OP = OR = OS = OQ   ...(4) [From (1), (2) and (3)]

In ΔTSQ,

seg TO is the median   ...(By definition)

∴ by Apollonius theorem,

TS2 + TQ2 = 2TO2 + 2OQ2   ...(5)

In ΔPTR,

seg TO is the median   ...(By definition)

∴ by Apollonius theorem,

TP2 + TR2 = 2TO2 + 2OR2

∴ TP2 + TR2 = 2TO2 + 2OQ2   ...(6) [From (4)]

∴ from (5) and (6), we get,

TS2 + TQ2 = TP2 + TR2

shaalaa.com

Notes

Students can refer to the provided solutions based on their preferred marks.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Pythagoras Theorem - Practice Set 2.2 [पृष्ठ ४३]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that `2"AB"^2 = 2"AC"^2 + "BC"^2`


In Figure ABD is a triangle right angled at A and AC ⊥ BD. Show that AC2 = BC × DC


 
 

In an equilateral triangle ABC, D is a point on side BC such that BD = `1/3BC` . Prove that 9 AD2 = 7 AB2

 
 

Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


In a rectangle ABCD,
prove that: AC2 + BD2 = AB2 + BC2 + CD2 + DA2.


Prove that `(sin θ + cosec θ)^2 + (cos θ + sec θ)^2 = 7 + tan^2 θ + cot^2 θ`.


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7


Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


The foot of a ladder is 6m away from a wall and its top reaches a window 8m above the ground. If the ladder is shifted in such a way that its foot is 8m away from the wall to what height does its tip reach?


From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE= OA2 + OB2 + OC2 - OD2 - OE2 - OF2


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC2 - AB2 = 2BC x ED


A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that  OB2 + OD2 = OC2 + OA2


AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.


The perimeters of two similar triangles ABC and PQR are 60 cm and 36 cm respectively. If PQ = 9 cm, then AB equals ______.


A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.


In a triangle, sum of squares of two sides is equal to the square of the third side.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×