मराठी

The Foot of a Ladder is 6m Away from a Wall and Its Top Reaches a Window 8m Above the Ground. If the Ladder is Shifted in Such a Way that Its Foot is 8m Away from the Wall to What Height Does Its Tip - Mathematics

Advertisements
Advertisements

प्रश्न

The foot of a ladder is 6m away from a wall and its top reaches a window 8m above the ground. If the ladder is shifted in such a way that its foot is 8m away from the wall to what height does its tip reach?

बेरीज

उत्तर

Let AC be the ladder and A be the position of the window which is 8m above the ground.
Now, the ladder is shifted such that its foot is at point D which is 8m away from the wall.
∴ BD = 8m
At this instance, the position of the ladder is DE.
∴ AC = DE
Using Pythagoras theorem in ΔABC,
AC2 = AB2 + BC2
= (8m)2 + (6m)2
= 64m2 + 36m2
= 100m2
= (10m)2
∴ AC = DE = 10m
Using Pythagoras theorem in ΔDBE,
BE2 = DE2 - BD2
⇒ BE2 = (10m)2 - (8m)2
= 100m2 - 64m2
= 36m2
= (6m)2
⇒ BE = 6m
Thus, the required height up to which the ladder reaches is 6m above the ground.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Pythagoras Theorem - Exercise 17.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 17 Pythagoras Theorem
Exercise 17.1 | Q 8

संबंधित प्रश्‍न

ABCD is a rectangle whose three vertices are B (4, 0), C(4, 3) and D(0,3). The length of one of its diagonals is 
(A) 5
(B) 4
(C) 3
(D) 25


In the given figure, ABC is a triangle in which ∠ABC> 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2BC.BD.


In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

`"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`


ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.


In the given figure, ∆ABC is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices ?


In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.


In an isosceles triangle ABC; AB = AC and D is the point on BC produced.
Prove that: AD2 = AC2 + BD.CD.


Diagonals of rhombus ABCD intersect each other at point O.

Prove that: OA2 + OC2 = 2AD2 - `"BD"^2/2`


Prove that `(sin θ + cosec θ)^2 + (cos θ + sec θ)^2 = 7 + tan^2 θ + cot^2 θ`.


The sides of a certain triangle is given below. Find, which of them is right-triangle

6 m, 9 m, and 13 m


In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find :
(i) AC
(ii) CD


A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 = AD2 - BC x CE + `(1)/(4)"BC"^2`


In the given figure. PQ = PS, P =R = 90°. RS = 20 cm and QR = 21 cm. Find the length of PQ correct to two decimal places.


From given figure, In ∆ABC, If AC = 12 cm. then AB =?


Activity: From given figure, In ∆ABC, ∠ABC = 90°, ∠ACB = 30°

∴ ∠BAC = `square`

∴ ∆ABC is 30° – 60° – 90° triangle

∴ In ∆ABC by property of 30° – 60° – 90° triangle.

∴ AB = `1/2` AC and `square` = `sqrt(3)/2` AC

∴ `square` = `1/2 xx 12` and BC = `sqrt(3)/2 xx 12`

∴ `square` = 6 and BC = `6sqrt(3)`


For going to a city B from city A, there is a route via city C such that AC ⊥ CB, AC = 2x km and CB = 2(x + 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.


Lengths of sides of a triangle are 3 cm, 4 cm and 5 cm. The triangle is ______.


Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.


Two squares are congruent, if they have same ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×