मराठी

From a Point O in the Interior of AδAbc, Perpendicular Od, Oe and of Are Drawn to the Sides Bc, Ca and Ab Respectively. Prove That: Af2 + Bd2 + Ce2 = Oa2 + Ob2 + Oc2 - Od2 - Oe2 - Of2 - Mathematics

Advertisements
Advertisements

प्रश्न

From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE= OA2 + OB2 + OC2 - OD2 - OE2 - OF2

बेरीज

उत्तर


In right triangle OFA, ODB and OEC, we have
OA2 = AF2 + OF2
OB2 = BD2 + OD2
OC2 = CE2 + OE2
Adding all these results, we get
OA2 + OB2 + OC2 = AF2 + BD2 + CE2 + OF2 + OD2 + OE2
⇒ AF2 + BD2 + CE2 = OA2 + OB2 + OC2 - OD2 - OE2 - OF2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Pythagoras Theorem - Exercise 17.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 17 Pythagoras Theorem
Exercise 17.1 | Q 14.1

संबंधित प्रश्‍न

Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:


In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

`"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`


Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides


In the given figure, ∆ABC is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices ?


For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

∴ ∠BAC =

∴ AB = BC = × AC

                 = × `sqrt8`

                 = × `2sqrt2`

                 =


In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ= 4PM– 3PR2.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


Find the length of diagonal of the square whose side is 8 cm.


In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.


In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2AD2 + `(1)/(2)"BC"^2`


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2(AD2 + CD2)


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9BP2 = 9BC2 + 4AC2


In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.
SHow that ∠RTP = 90°.


Find the unknown side in the following triangles


Find the distance between the helicopter and the ship


For going to a city B from city A, there is a route via city C such that AC ⊥ CB, AC = 2x km and CB = 2(x + 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.


In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2 

[Hint: Produce AB and DC to meet at E.]


If the areas of two circles are the same, they are congruent.


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. Find the length of the ladder.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×