English

If the Angles of a Triangle Are 30°, 60°, and 90°, Then Shown that the Side Opposite to 30° is Half of the Hypotenuse, and the Side Opposite to 60° is √ 3 2 Times of the Hypotenuse. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.

Answer in Brief
Sum

Solution

Given : In ΔCAB, m∠A=90°, m∠B = 60°, M∠C=30°

To prove : i  AB = `1/2`BC         ii. AC = `sqrt(3)/2 BC`

Construction: Take a point 'D' on ray BA such that AB = AD. join point C to point D. 

Proof: In ΔCBD,

AD= AB                                                                     ....[By construction]

∴ A is the midpoint of seg BD                                  ....(i)

Also, m∠CAB = 90°                                                    ....[Given]

∴ seg CA ⊥ seg BD                                                    .....(ii)

∴ seg CA is the perpendicular bisector of seg BD     ....[From(i) and (ii)]

∴ CD = CB                                                                ...........[By perpendicular bisector theorem]

∴ ΔCDB is an isosceles triangle

∴ ∠CDB ≅ ∠CBD                                                      .....(iii)[By isosceles triangle theorem]

But,∠CBD = 60°                                                       ....(iv) [Given]

∴ ∠CDB = 60°                                                         ....[from (iii) and (iv)]

∴ ∠BCD = 60°                                                        .....[Remaining angle of a triangle ]

∴  ΔCDB is an equilateral triangle                          ....[All angle are 60°]

∴ BD = BC = CD                                                     ....(vi)[Sides of equilateral triabgle ]

   AB = `1/2` BD                                                         .....(vi) [By construction]

   AB = `1/2` BC                                .                       ...(vii) [ From (v) and (vi)]

  In ΔCAB,

 ∠CAB = 90°                                                            ....[Given]

∴ BC2 = AC2+AB2                                                     ............[ By pythagoras theorem]

∴` BC^2 = AC^2 + (1/2 BC)^2`                              ...[From (vii)]

∴`BC^2 = AC^2 +1/4 BC^2`

∴ `AC^2 = BC^2 -1/4 BC^2`

∴ `Ac^2 = (4BC^2-BC^32)/4`

∴ `AC^2 = (3BC^2)/4`

∴ `AC = sqrt(3)/2 BC`                                                 ...[ Taking square root on both sides]

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a ∆ABC, AD ⊥ BC and AD2 = BC × CD. Prove ∆ABC is a right triangle


Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 50 cm, 80 cm, 100 cm

 


 In Figure, ABD is a triangle right angled at A and AC ⊥ BD. Show that AD2 = BD × CD


Identify, with reason, if the following is a Pythagorean triplet.

(5, 12, 13)


Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


If P and Q are the points on side CA and CB respectively of ΔABC, right angled at C, prove that (AQ2 + BP2 ) = (AB2 + PQ2)


Prove that (1 + cot A - cosec A ) (1 + tan A + sec A) = 2


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.


The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30


Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.


In the given figure. PQ = PS, P =R = 90°. RS = 20 cm and QR = 21 cm. Find the length of PQ correct to two decimal places.


Find the distance between the helicopter and the ship


Choose the correct alternative:

If length of sides of a triangle are a, b, c and a2 + b2 = c2, then which type of triangle it is?


In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2 

[Hint: Produce AB and DC to meet at E.]


In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


In a right-angled triangle ABC, if angle B = 90°, BC = 3 cm and AC = 5 cm, then the length of side AB is ______.


A right-angled triangle may have all sides equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×