हिंदी

In the Following Figure, Bd is Parallel to Ca, E is Mid-point of Ca and Bd = 1/2ca Prove That: Ar. ( δAbc ) = 2 X Ar.( δDbc ) - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, BD is parallel to CA, E is mid-point of CA and BD = `1/2`CA
Prove that: ar. ( ΔABC ) = 2 x ar.( ΔDBC )

योग

उत्तर

Here BCED is a parallelogram, Since BD = CE and BD || CE.
ar. ( ΔDBC ) = ar. ( ΔEBC )      ......( Since they have the same base and are between the same parallels )

In ΔABC,
BE is the median,
So, ar. ( ΔEBC ) = `1/2` ar. ( ΔABC )
Now, ar. ( ΔABC ) = ar. ( ΔEBC ) + ar. ( ΔABE)
Also, ar. ( ΔABC ) = 2ar. ( ΔEBC )
⇒ ar. ( ΔABC ) = 2ar. ( ΔDBC )

shaalaa.com
Figures Between the Same Parallels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Area Theorems [Proof and Use] - Exercise 16 (C) [पृष्ठ २०२]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 16 Area Theorems [Proof and Use]
Exercise 16 (C) | Q 8 | पृष्ठ २०२

संबंधित प्रश्न

The given figure shows the parallelograms ABCD and APQR.
Show that these parallelograms are equal in the area.
[ Join B and R ]


The given figure shows a rectangle ABDC and a parallelogram ABEF; drawn on opposite sides of AB.
Prove that: 
(i) Quadrilateral CDEF is a parallelogram;
(ii) Area of the quad. CDEF
= Area of rect. ABDC + Area of // gm. ABEF.


In the following, AC // PS // QR and PQ // DB // SR.

Prove that: Area of quadrilateral PQRS = 2 x Area of the quad. ABCD.


In the given figure, D is mid-point of side AB of ΔABC and BDEC is a parallelogram.

Prove that: Area of ABC = Area of // gm BDEC.


In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.


ABCD is a parallelogram a line through A cuts DC at point P and BC produced at Q. Prove that triangle BCP is equal in area to triangle DPQ.


In a parallelogram ABCD, point P lies in DC such that DP: PC = 3:2. If the area of ΔDPB = 30 sq. cm.
find the area of the parallelogram ABCD.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


E, F, G, and H are the midpoints of the sides of a parallelogram ABCD.
Show that the area of quadrilateral EFGH is half of the area of parallelogram ABCD.


Show that:
The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×