Advertisements
Advertisements
प्रश्न
ΔPBC and ΔQBC are two isosceles triangles on the same base BC but on the opposite sides of line BC. Show that PQ bisects BC at right angles.
उत्तर
Given: Two ΔSPBC and QBC on the same base BC but in the opposite sides of BC such that PB = PC and QB = QC.
To prove: PQ bisects BC and is ⊥ to BC.
Proof: Since, the locus of points equidistant from two given points is the perpendicular bisector of the segment joining them. Therefore, ΔPBC is isoceles
⇒ P lies on the perpendicular bisector of BC
ΔQBC is isoceles ⇒ QB = QC
⇒ Q lies on the perpendicular bisectors of BC
∴ PQ is the perpendicular bisectors of BC
Hence, PQ bisects BC at right angles.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Construct a right angled triangle PQR, in which ∠Q = 90°, hypotenuse PR = 8 cm and QR = 4.5 cm. Draw bisector of angle PQR and let it meets PR at point T. Prove that T is equidistant from PQ and QR.
Construct a triangle ABC, with AB = 7 cm, BC = 8 cm and ∠ABC = 60°. Locate by construction the point P such that:
- P is equidistant from B and C.
- P is equidistant from AB and BC.
Measure and record the length of PB.
Describe the locus of the centre of a wheel of a bicycle going straight along a level road.
Describe the locus of the door handle, as the door opens.
Describe the locus of the centres of all circles passing through two fixed points.
Describe the locus of a point in rhombus ABCD, so that it is equidistant from
- AB and BC;
- B and D.
Describe the locus of points at distances less than or equal to 2.5 cm from a given point.
Sketch and describe the locus of the vertices of all triangles with a given base and a given altitude.
By actual drawing obtain the points equidistant from lines m and n; and 6 cm from a point P, where P is 2 cm above m, m is parallel to n and m is 6 cm above n.
In Δ ABC, the perpendicular bisector of AB and AC meet at 0. Prove that O is equidistant from the three vertices. Also, prove that if M is the mid-point of BC then OM meets BC at right angles.