हिंदी

The Angle of Elevation of the Top of a Tower Standing on a Horizontal Plane from a Point a is α. After Walking a Distance D Towards the Foot of the Tower the Angle of Elevation is Found T - Mathematics

Advertisements
Advertisements

प्रश्न

The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α. After walking a distance d towards the foot of the tower the angle of elevation is found to be β. The height of the tower is

विकल्प

  • \[\frac{d}{cot \alpha + cot \beta}\] 

  • \[\frac{d}{cot \alpha + cot \beta}\]

  • \[\frac{d}{\tan \beta - \tan \alpha}\]

  • \[\frac{d}{\tan \beta - \tan \alpha}\]

MCQ

उत्तर

The given information can be represented with the help of a diagram as below.

Here, CD = h is the height of the tower. Length of BC is taken as x.

In`Δ ACD`

`tan A=(CD)/(AC)`

`tan∝=h/(d+x)` 

`h=(d+x)tan∝ `............(1)

In ΔBCD. 

`tan ß = CD/BC` 

`tan ß=h/x`

`x=h cot ß`          ...............(2) 

From (1) and (2) 

`h=(d+h cot ß)tan ∝`

`h=d tan ∝+h cot ß tan ∝` 

`h(1-cot ß tan ∝ )= d tan ∝` 

`h=d tan ∝/((1-cot ß tan ∝ ))=d/(cot ∝-cot ß)` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Trigonometry - Exercise 12.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 12 Trigonometry
Exercise 12.3 | Q 7 | पृष्ठ ४२

संबंधित प्रश्न

The angle of elevation of a cliff from a fixed point is θ. After going up a distance of k metres towards the top of cliff at an angle of φ, it is found that the angle of elevation is α. Show that the height of the cliff is metres


A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.


The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m. from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.


From a point P on the ground the angle of elevation of a 10 m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flag-staff from P is 45°. Find the length of the flag-staff and the distance of the building from the point P. (Take `sqrt3` = 1.732)


The angles of elevation of the top of a tower from two points at distance of 5 metres and 20 metres from the base of the tower and is the same straight line with it, are complementary. Find the height of the tower.


From the top of a vertical tower, the angles depression of two cars in the same straight line with the base of the tower, at an instant are found to be 45°  and 60° . If the cars are 100 m apart and are on the same side of the tower, find the height of the tower.


A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m. From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (take\[\sqrt{3}\]= 1.732)


From the top of the light house, an observer looks at a ship and finds the angle of depression to be 30°. If the height of the light-house is 100 meters, then find how far the ship is from the light-house.


If the length of the shadow of a tower is increasing, then the angle of elevation of the sun ____________.


At a point on level ground, the angle of elevation of a vertical tower is, found to be α such that tan α = `1/3`. After walking 100 m towards the tower, the angle of elevation β becomes such that tan β = `3/4`. Find the height of the tower. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×